Nanomedicine for the reduction of the thrombogenicity of stent coatings

نویسندگان

  • Varvara C Karagkiozaki
  • Stergios D Logothetidis
  • Spyridon N Kassavetis
  • George D Giannoglou
چکیده

The treatment of patients with drug-eluting stents (DES) continues to evolve with the current emergence of DES technology that offers a combination of pharmacological and mechanical approaches to prevent arterial restenosis. However, despite the promising short-term and mid-term outcomes of DES, there are valid concerns about adverse clinical effects of late stent thrombosis. In this study, we present an example of how nanomedicine can offer solutions for improving stent coating manufacturing, by producing nanomaterials with tailored and controllable properties. The study is based on the exploitation of human platelets response towards carbon-based nanocoatings via atomic force microscope (AFM). AFM can facilitate the comprehensive analysis of platelets behavior onto stent nanocoatings and enable the study of thrombogenicity. Platelet-rich plasma from healthy donors was used for the real-time study of biointerfacial interactions. The carbon nanomaterials were developed by rf magnetron sputtering technique under controllable deposition conditions to provide favorable surface nanotopography. It was shown that by altering the surface topography of nanocoatings, the activation of platelets can be affected, while the carbon nanocoatings having higher surface roughness were found to be less thrombogenic in terms of platelets adhesion. This is an actual solution for improving the stent coating fabrication.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings.

BACKGROUND Stent thrombosis is a lethal complication of endovascular intervention. Concern has been raised about the inherent risk associated with specific stent designs and drug-eluting coatings, yet clinical and animal support is equivocal. METHODS AND RESULTS We examined whether drug-eluting coatings are inherently thrombogenic and if the response to these materials was determined to a gre...

متن کامل

Acute Thrombogenicity of a Durable Polymer Everolimus-Eluting Stent Relative to Contemporary Drug-Eluting Stents With Biodegradable Polymer Coatings Assessed Ex Vivo in a Swine Shunt Model.

OBJECTIVES This study sought to evaluate whether the permanent fluoropolymer-coated Xience Xpedition everolimus-eluting stent (Xience-EES) exhibits lower acute thrombogenicity compared with contemporary drug-eluting stents (DES) with biodegradable polymer coatings in an acute swine shunt model. BACKGROUND Previous pre-clinical and clinical experience suggests that several factors may influenc...

متن کامل

Novel nanostructured biomaterials: implications for coronary stent thrombosis

BACKGROUND Nanomedicine has the potential to revolutionize medicine and help clinicians to treat cardiovascular disease through the improvement of stents. Advanced nanomaterials and tools for monitoring cell-material interactions will aid in inhibiting stent thrombosis. Although titanium boron nitride (TiBN), titanium diboride, and carbon nanotube (CNT) thin films are emerging materials in the ...

متن کامل

Nano-structure TiO2 film coating on 316L stainless steel via sol-gel technique for blood compatibility improvement

Objective(s):  Titanium oxides are known to be appropriate hemocompatible materials which are suggested as coatings for blood-contacting devices. Little is known about the influence of nanometric crystal structure, layer thickness, and semiconducting characteristics of TiO2 on blood hemostasis.   Materials and Methods: Having used sol-gel dip coating method in this study, TiO2 thin films were d...

متن کامل

Dual Antiplatelet Therapy After Drug-Eluting Stents Should Be Continued for More Than One Year and Preferably Indefinitely

Since its introduction, percutaneous coronary intervention (PCI) has been limited by 2 major factors: restenosis and vessel closure attributable to thrombosis. The use of coronary stents has had a marked beneficial impact on rates of restenosis.1,2 However, the vessel trauma that occurs during PCI induces platelet activation, and all currently available coronary stents are made of metal and are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010